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An analytical procedure for computing the dynamic characteristics of
steam case~tube heaters is proposed. The technique is illustrated by an
example.

The dynamic characteristics of heaters are com-
puted by constructing partial differential equations de-
scribing the convective heat transfer process between
the heating steam and product separated by a conduc-
tive partition in the heater.

An analytical expression for the dynamic character-
istics can be obtained by simultaneous solution of the
differential equations constructed for the non-steady-
state heat transfer process.

We make the following assumptions in order to sim-
plify our mathematical investigation:

1) We can assume developed turbulent flow of the
fluid, as a result of which the temperature of the prod-
uct can be considered uniform over the pipe cross sec-
tion; this enables us to allow only for the temperature
variation in the direction of flow (the point of entry into
the heater is taken as the origin);

2) the specific heats remain constant;

3) the density of the product is constant;

4) the mechanical energy of the product (i.e., its
kinetic and potential energies) is negligible as com-
pared with its thermal energy;

5) we can neglect the accumulating capability of the
heat exchanger wall; as is shown in [1], such an as-
sumption is legitimate in calculating heat exchange
equipment and can be regarded as the first approxima-
tion of the actual process. This entails replacing the
heat exchange coefficients in the differential equations
by heat transfer coefficients, and the wall tempera-
tures by the temperatures of the heat carriers flowing
on the opposite side; ‘

6) the convective heat transfer coefficients are prac-
tically independent of the expenditure and temperature
of the heat carriers;

7) ideal mixing of the heat transfer agent takes place
inside the case.

DETERMINING CAPACITANCE FROM THE STEAM
SIDE

The material balance equation for the steam space
for a constant level of the condensate is

d
G, =G+ V, ; . (1)

Assuming that the temperature of the condensate is
equal to the steam temperature Ty [2, 3], we can write
the thermal balance equation for the steam space when

the steam feed rate changes by the amount Gy in the
time dt as

Gyi" = Gyo + V, ﬂ%_tu_"_)_ +

+ GyeeT, + Gy

L e PR
where Vyd(y;Uy) is the energy accumulated in the vol-
ume Vj in the time dt (the energy of expansion or com-
pression of the steam).

We assume, moreover, that the temperature of the
outside wall of the steam jacket is equal to the temper-
ature of the steam in the jacket; this is allowed for by
the term C3;dT; in Eq. (2).

Substituting the value of Gy from (1) into expression
(2), recalling that Gy = Ggy in the steady state, and as-
suming that the thermal losses are constant, we write

” d
G (" —Tw) =—VTy _d% +
+ V] d(YIU") + C.; ﬂ

dt dt + GIOTI + kao (T1 _‘Tz)~ (3)

For small deviations of the variables we have
Y]=N’1m+QT1; Uv=Um+ﬁT1. (4)

Since intense mixing occurs in the case, the param-
eters of the steam space vary with respect to time only,
i.e., 8Ty/0x = 0 and (3(yyUy)/0x) = 0.

Expression (3) therefore becomes

dT

m1+@m+FmGr4@ (5)

G(i"—Ty)=v

where
Y=WViWUp—Tw) e+ Vi Yimb + Csl- (6)

The steam feed rate through the heater Gy, depends
on the degree of opening of the regulating valve &, its
specific permeability C, and the pressure drop across
the valve (Pm — Py)[4]:

Gro =31.6ee5E0C V1o V Py — Prq.- M

When the valve is opened by a further amount A¢, the
pressure in the heater case changes by AP; and the
steam expenditure changes by the amount G;.

Agsuming that the steam pressure in the main is
constant, we have

Gy + Gy =

=31.6¢¢;(Eo+ AB)C Vi VPy—Pru—AP. (8)
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Replacing VB, —P;,— AP, by its approximate ex-
pression, subtracting (7) from (8), and omitting terms
of the second order of smallness, we obtain

Gy =31.684 CV Y10 V Pp— PioAAE —

_ 31.6 eeEg CV v AP, . 9)
2V Pn—Py

Introducing the notation

1
Fika

b) @ =31.6e,;CV V5o VEr—Py,

,_ 3162t CV V0 B
QVPm_Plo

a)y Ry =

. -
s fo=1"—Tho,

c)a

(10)

and taking account of the small parameter variations
APy = 1Ty, we obtain from expression (9) the following
dynamics equation for the steam space:

dT , 1
argAE =y L f G+ ar) Ty + — T, —Ty. (11)
DETERMINING THE CAPACITANCE FROM THE
PRODUCT SIDE

The thermal balance equation for an incompressible
fluid characterizing the heat flux per element of length
of the product conduit can be constructed on the basis
of the following considerations,

The heat influx per volume element is

Fikq
fL

(T, —Ty). (12)

This heat increases the product temperature at the
rate
dr, orT oT,

Z
= v
dt ot + ox

(13)

The thermal balance equation for a volume ele-
ment of the product is

aT, aT, 1
v = T, —T,), 14
o Y o CiR, =1 (4
where
C,=fLvyyc;. (15)

SUM EQUATION OF THE HEATER
From (11) and (14) we obtain

dr,
dt

+ (T, —Ty) = Rira AL,

Ry + R (G +ar) T, +

aT
ot

ar,

CR, —* +CRw

=T,—T,  (16)

Let us introduce the notation

a) a,=vYRy;, @ =CRy,
b) a3 = R, (Gyy +a'ry); a, = Ryrea. 7)
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System (16) then becomes

4 % + (@ + ) T, () =Ty (x, 1) = a,AE(Y),

azﬁé_’t"_ﬁ_n(z) +Tlx, ) = —%v%' (18)

The initial conditions for the heater under consider-
ation (for variable component temperatures) for t = 0
and x > 0 are

0T, (0)

T,0)=0 BrTen =0; T, (x, 0) =0; T3 (x, O)

ot

A (0) = 0. (19)
The boundary conditions for x = 0 and t > 0 are

T, (0, t) = 0 =0; AE=AF ().  (20)

T, (0, 1)
0x
The solution of system of partial differential equa-

tions (18) can be found by the well-known methods of
operational calculus. _

Applying direct and inverse Laplace transformations
under the indicated initial and boundary conditions, we
obtain an expression for the temperature of the product
transformed with respect to the variable t,

ot = L0 1 —exp [—i"—f{i x}} AE () +

o)
+{exp [_“PT(") x]} 7,0, p), 1)
where
¢(p):p+iﬁ-*~1—~—; (22)

Ay ay(ap + a3 +1)
1

—_—— (23)
a,(a;p + a3+ 1)

P (p)
The temperature of the product at the heater outlet
is

Ty, py =22 {l—eXpI—(P(P)T] AL () +
¢ (p)

+ {exp[—eo ()11} T2(0, p). (24)

The variable degree of opening of the regulating
valve Af(p) is the regulating parameter; the tempera-
ture T4 (0, p) of the product entering the heater at
x = 0 is the perturbation.

The transfer function

H, {p) = exp[— @ {p) 7] (25)

represents the relationship between product temper-
atures at the intake and outlet of the heater for a con-
stant degree of opening of the regulating valve,

The transfer function

(n)
o}

-&-

|

H1<p>=M;{1-—exp£~—cp<pm}= (1— H, (p)] (26)

P P

—
~

is the relationship between the temperature of the
product at the heater outlet and the regulating param-
eter Af for Ty0,t) = 0.
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Fig. 1. Block diagram of the heater,
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Fig. 2. Excursion characteristic of heater in the regulating "percentage

opening of the regulating valve Af{—product temperature at outlet Ty"

channel for a perturbation of At = 35% opening of the regulating valve.
1) Theoretical characteristic; 2) experimental characteristic.
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Hence, the block diagram of a heater with ideal
mixing in the case takes the form shown in Fig. 1
if we neglect heat capacity of the wall.

REACTION TO A JUMP PERTURBATION. PERTUR-
BATION IN PRODUCT TEMPERATURE AT THE HEAT-
ER INTAKE

If T, (0, t) is a step function equal to 0 for t < 0 and
to Tyy for t > 0, and if A£(t) = 0, then the dynamic ex-
cursion characteristic of the heater with temperature
perturbation of the product at the intake can be found
by expanding H, (p) in an infinite series and subjecting
each term of the result to inverse transformation. It
is necessary to bear in mind here that since T, (0,t) =
= Ty¢ = const for t > 0, the transformation of T, (0, p)
yields the quantity Ty/p.

Then

Hy(p) = Zif—ﬁ - % H, (p). @7)

Substituting in the value of Hy (p) from (25) and ¢(p)

from (22), we obtain

Hy (p) = — [exp(— po)} x

1
14
A=) = cmras] - @

Let us expand the last exponential factor in expres—
sion (28) in a series and carry out the inverse trans-
formation of Eq. (28),

-g—) {a(z—r)+

N 2
-+ exp J— _t:;lf“‘ >
. a(az+ 1)

( a;g )"(t_T)H

nl(n—1

hy (f) = exp (

u(t— 'c)} . (29)

K
Nk

B
I

where
§(f—wy=0for f< v, u(t —1)==0 for t <
§t—ty=1for t>v u(t—1)=1for t >

Analysis of expression (29) indicates that already
for t — 7 = 1 sec the term

exp [-—

)" (t — 7yt

( s
T < 0.0036.

t—1 }x
a,(as +1)

s

n=1

This means that to within a small error we can con-
sider the heater as a delayed-response amplifier link
along the "intake product temperature-outlet product
temperature® channel,

The heater equation along this channel can be writ~
ten as
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Ty (p) = exp(—p7) exp (—g—) Tw.  (30)

2

The gain of the amplifier link, in the chosen nota-
tion, is given by

Fiky
L9, 31
Gy ) 1)

a

Kr = exp (——l> = exp (—

PERTURBATION IN STEAM EXPENDITURE

If At(t)is a step function (the transformation A (p)
yields (1/p)A¢), i.e., the perturbation in regulating
valve opening takes the form of a jump by the amount
Af at the instant t = 0, and if Ty (0, p) = 0, then the dy-
namic excursion characteristic of the heater can be
found from the following expression for the transfer
function (with allowance for (26)):

’ __T2(L’ p)=_1 =
Hi (p) T Hi(p)
~ L0 g (32)
p o) -

Substituting the values of ¢(p), ¥(p), and Hy{p) from
(22) and (28) into (32), expanding the factors of the re-
sulting expression into elementary fractions {2], and
carrying out inverse Laplace transformation using the
contraction formula, we obtain an expression for the
original of the function Hy(p),

__ 8, ] — exp {a,—0y) exp b ) +
6, —6, a, 8, 0, |
0, T a,—06, )
+ [—exp | —— 2% X
0,— 9, [ P < a; 8,
X exp (—é)} for ¢ >, (34)
\ 2/

where 0y and 0y are the roots of the equation

a, Qs . as

p2+(

\

If 7/ay = 0,22, then for t > 7 we have

h ()~ i [l—f« gz_el exp (——GI—)—-—
O

Aol 1 2

o= e R

Thus, the dynamic excursion characteristic of the
heater in the regulating "degree of opening of the regu-
lating valve-product temperature at heater outlet® chan-
nel can be expressed as follows:



386

for 7/ay = 0.22,

T,0= % [1— & (~L)
2 () [ o, exp ) .

[72 e

0 t
4+ 2 exp (—E—):l Ag for 0t <1,

61_62 2/
T,(t) = 4T [l+ 2 —8 exp (—L>_~
asa, 1 — 6, \ 1
a,—6, t :
—2__ 2 exp | ——|| At for ¢ ; 37
e | %ﬂ slorizm 6D

for /a3 > 0.22

nm=ﬂ{Fe% ad—i%—

2

X exp (— é)} At for {> 1. (38)

N 2

To determine the gain, time constant, and lag in the
regulating channel of the heater we must construct the
excursion characteristic described by Egs. (37) or
(38).

SAMPLE CALCULATION OF THE DYNAMIC CHAR-
ACTERISTICS OF A CASE-TUBE HEATER

Initial data for the Lang three-step tomato pulp heat-
er: eleven tubes in product conduit cluster; outside di-
ameter of tubes 0.055 m;tube wall thickness 0,0025 m;
tube length I= 3.5 m; outside diameter of case 0.5 m;
case wall thickness 0.008 mm; Py, = 49 - 104N/m?;

Py = 7.845 - 10* N/m?; volume feed rate of product
through heater v = 3.33 » 107° m®/sec; k = 291 J/°K -
-m?- sec; i"=2.7- 10° J/kg; T, =i = 488 - 10° I/kg;
cy = 0,48+ 10° J/kg- °K; cq = 4.02-10° J/kg- °K;

vs = 1021. 4 kg/m?; solid content of pulp 5%; C = 32;
eef=0,736; £3 = 0.5; :

a) from the table for dry saturated steam and from
(4) for By = 7.845 - 10* N/m?we obtain yym = 1.005
kg/m® o = 0.0316 kg/m® + °K; Uy =2.54 - 10° J/kg;
B=1.,1-10°J/kg+°K:n=6.13 + 10° N/m? - °K;

b) on the basis of the geometric dimensions of the
heater we find that Vy = 0.349 m®; C = 153,32 - 10° 3/kg;
F; = 18.85 m% f=216 - 107* m?;

¢) from expression (6) we obtain the value y=175.8 -
- 10° J/K;

d) from expression (15) we obtain Cy = 875 - 10° J/
/°K;

e) from (172) and (10a) we obtain q; = 32.1 sec, ajy =
= 160 sec;

f) to determine the coefficients a3 and a4 we first
obtain the following values from (7) and (10): Gy =

INZHENERNO-FIZICHESKII ZHURNAL

= 0,2125 kg/sec; 1, = 2.213 - 10° I fkg; a = 0.426 kg/
/sec + % opening of the regulating valve; a' = 1.6 - 10~°
kg/sec - °K. We then find from (17b) that a3 = 0.795,
ay =1.72° K/% opening of the regulating valve;

g) 7= 8lf/vy = 64.3 sec;

h) heater gain in the perturbing "product temperature
at intake-product temperature at outlet" channel is giv-
en by (31)

Kr=exp (—~£—)=0.67;
2

i) the heater equation in the perturbing channel is
To(p)=exp (—p-64.3)0.67 Ta;

j) since 7/ay > 0.22, it follows that in order to de-
termine the dynamic properties of the regulating chan-
nel of the heater it is necessary to construct the ex~
cursion characteristic described by Eq. (38).

This characteristic is shown in Fig. 2.

From the excursion characteristics we find that 7=

Kp = 2 X[l—exp(——2)]=
a Q

2

= 20 sec, Ty = 106 sec,

3
= 0.71°K/% opening of the regulating valve,
The dashed curve represents the experimental
excursion curve,

NOTATION

C is the specific carrying capacity of the regulating valve at its
maximum opening; C; is the specific heat of the product, J/°K; Cy is
the specific heat of the outer surface of the case, J/°K; F| is the heat
exchange surface between the steam and product, m? Gyisthe variable
steam feed rate by weight relative to the nominal feed rate Gy, kg/

/sec; Gy is the variable condensate feed rate relative to the nominal

feed rate Gy, kg/sec; L is the over-all length of the product conduit, m;
Py is the steam pressure intheheater, N/m? Pypisthe average steam pres-
sure in the heater, N/m?'; Py, is the steam pressure in the main, N/mz;
Q, isthe thermalloss, J/sec; Tjisthe variable steam pressure, °K; Tyis
the variable product temperature, °K; Uy is the internalenergy of the
steam, I/kg; Uy, is the internal energy of the steam under average oper-
ating conditions, J/kg; Vy isthe volume of the steam space, m?; cisthe
specific heat of the product, J/kg - °K; c¢ is the specific heat of the
condensate (¢, =4.19 10° J/kg - °K); f is the cross sectional area of
the product stream, m?; ig is the enthalpy of the condensate under aver-
age operating conditions, f/kg, which is numerically equal to the
initial steam temperature T;y: i" is the enthalpy of the steam enter-
ing the heater, J/kg; ko is the over-all heat transfer coefficient, J/m?.
- sec - "K; p is the differentiation operator; t is the time, sec; v is the
velocity of the product, m/sec; o is a coefficient allowing for the de-
pendence of steamn density on temperature, kg/m3 - °K; Bisacoeffi-
cient allowing for the dependence of the internal energy of the

stream on temperature, J/kg - °K; y is the effective specific heat of

the steam space, J/°K; vy, is the specific weight of the steam, kg/ms;
y1im is the specific weight of the steam under average operating con-
ditions, kg/m®; y, isthe specific weight of the product, kg/m 5 eefisa
correction factor which allows for the effect of expansion; £ the

degree of opening of the regulating valve, expressed as the % opening
of the regulating valve; 7 is a coefficient allowing for the dependence
of the pressure of the saturated steam on its temperature, N/m2 * °K;
7= L/v is the total time of travel of the product through the heater, sec.
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